

Determination of Betaine, Choline, Carnitine, Dimethylethanolamine and Acetyl-choline in Finished Goods by UPLC/MS

Aihua Liu, Josh H. Farley, Thao Nguyen, Edgar Grigorian, Spencer Carter Genysis Labs, 391 S Orange Street Suite F, Salt Lake City, UT 84104

and repeatability experiment was <10% (Table 4). Four days stability was established for both extracted sample and standard solution in ambient conditions protected from light.

PURPOSE

Betaine/Choline/Carnitine/Dimethylethanolamine (DMEA)/Acetyl-choline (Fig. 1) are transporters, which are involved in many functions including memory and muscle control. To quantitate these transporters, an evaporative light scattering detector (ELSD) instead of traditional diode-array detector is commonly used since transporters have no double bonds and UV-Vis absorption. However, ELSD has limitations, such as low sensitivity, poor selectivity and non-linear response. In this presentation, we outline a sensitive, specific and robust quantitative method for transporters using UPLC-MS.

METHOD

Sample Preparation and Extraction:

About 2 g of sample was extracted by acetic acid, water and internal standard (IS). The extracted sample was cleaned by 0.20 µM filtration before analysis.

UPLC-MS Conditions

UPLC system: Waters ACQUITY UPLC H-Class core system including a quaternary solvent manager, sample management and column heater Column: ACQUITY UPLC BEH C18 (Waters) Mobile Phase A: HPBA and H₂O Mobile Phase B: Acetonitrile Flow rate: 0.40 mL/min Pump Gradient Cycle time: 7.0 minutes MS detector: QDA (Waters) MS Parameters: Table

Figure 1: The Chemical Structure of Five Transporters.

MS CONDITIONS								
Mass Range (Da)	Capillary Voltage (V)		Probe Tempera	Gain				
80.0-210.0		1.5	600		1.0			
	•	Compound	s Parameters					
Analyte	SIM Mass (Da)	Retention Time (min)	IS	Cone Voltage (V)	Polarity			
Betaine	118	1.2	Betaine-D9	15	Positive			
Choline	104	1.5	Choline-D9	15	Positive			
Carnitine	162	1.5	Choline-D9	15	Positive			
DMAE	90	1.6	Choline-D9	15	Positive			
Acetyl Choline	146	2.4	Choline-D9	15	Positive			
Choline-D9 (IS)	113	1.5	N/A	15	Positive			
Betaine-D9 (IS)	127	1.2	N/A	15	Positive			

Table 1: UPLC/MS Conditions

Compound	Choline (Area)	Betaine (Area)	Carnitine (Area)	DMAE (Area)	Acetyl-choline (Area)
Replicate 1	4706363	8725271	6710747	2448160	6534087
Replicate 2	4863497	8858227	7154337	2625150	7058890
Replicate 3	5102429	9259073	7198337	2747349	7415177
Replicate 4	5043534	9098086	7228863	2677855	7528098
Replicate 5	5063835	9123960	7475731	2697444	7291131
Replicate 6	4676095	8821061	7187393	2530395	7315601
Average	4909292	8980946	7159235	2621059	7190497
Std Dev	188077	208577	248397	112375	357331
% RSD	3.8	2.3	3.5	4.3	5.0

RESULTS and DISCUSSION

During the method development stage, different columns and mobile phases were investigated. The results indicated that BEH C18 and HFBA/water/acetonitrile revealed ideal peak shape and sensitivity. Different potential IS were screened, and

validated over the range of 1.00-10.0 µg/mL with the target concentration of sample preparation at 5.00 µg/mL. The specificity experiment showed that there was no contribution between analytes/IS and no visible interference peak showed in blank

diluent at expected analyte retention times (Fig. 2). The LLOQ has sufficient sensitivity (S/N>10) (Fig. 3). System suitability consisted of six replicate injections of the middle standard solution and was injected before sample analysis, and RSD was

<10% (Table 2), Quadratic regression with 1/X² weighing factor provided the best fit, and the correlation coefficient r² is 20.995 (Fig. 4). The accuracy experiment showed that the spiking recovery is within ±20% (Table 3). The %RSD of precision

two stable labeled IS were selected for all five analytes. In order to eliminate the matrix effect, an extra 3 minutes of forward flush for each injection with high organic solvent was applied in LC gradient program. The method was successfully

123 Table 3: Post Spiking Accuracy (n=3)

Average

Figure 4: Calibration Curves Table 4: Precision and Repeatability Results

CONCLUSIONS

114

108

This UPLC-MS assay for quantitation of transporters in finished goods has been successfully validated. The assay is sensitive, specific and robust for the analysis of transporters in finished goods.